본문 바로가기
Java 배우기

Nested Classes

by 노화방지 Anti-aging Hairstyle 2016. 1. 5.
반응형

Nested Classes


자바 프로그래밍 언어에서는 다른 클래스 안에 클래스를 정의할 수 있습니다.
다른 클래스 안에 정의된 클래스를 nested class 라고 하며 아래 그 예가 있습니다:
The Java programming language allows you to define a class within another class. Such a class is called a nested class and is illustrated here:

class OuterClass {
    ...
    class NestedClass {
        ...
    }
}


용어: Nested 클래스는 2개의 카테고리로 구분됩니다: staticnon-static. 

static으로 선언된 종속 클래스를 static nested classes 라고 합니다.
Non-static nested 클래스는 inner classes라고 합니다.
Terminology:
 Nested classes are divided into two categories: static and non-static. Nested classes that are declared static are called static nested classes. Non-static nested classes are called inner classes.
class OuterClass {
    ...
    static class StaticNestedClass {
        ...
    }
    class InnerClass {
        ...
    }
}


nested 클래스는 그 enclosing 클래스의 멤버 입니다.
Non-static nested 클래스(inner 클래스)는 enclosing 클래스의 다른 멤버가 private으로 선언되었다 하더라도 그들 멤버에 접근할 수 있습니다.
Static nested 클래스는 enclosing 클래스의 다른 멤버에 접근할 수 없습니다.
OuterClass의 멤버로서, nested 클래스는  privatepublicprotected 또는 package private로 선언될 수 있습니다(outer 클래스는 public 또는 package private로만 선언될 있음을 기억해야 합니다).
A nested class is a member of its enclosing class. Non-static nested classes (inner classes) have access to other members of the enclosing class, even if they are declared private. Static nested classes do not have access to other members of the enclosing class. As a member of the OuterClass, a nested class can be declared privatepublicprotected, or package private. (Recall that outer classes can only be declared public or package private.)


Nested 클래스를 사용하는 이유? Why Use Nested Classes?


Compelling reasons for using nested classes include the following:

  • It is a way of logically grouping classes that are only used in one place: If a class is useful to only one other class, then it is logical to embed it in that class and keep the two together. Nesting such "helper classes" makes their package more streamlined.

  • It increases encapsulation: Consider two top-level classes, A and B, where B needs access to members of A that would otherwise be declared private. By hiding class B within class A, A's members can be declared private and B can access them. In addition, B itself can be hidden from the outside world.

  • It can lead to more readable and maintainable code: Nesting small classes within top-level classes places the code closer to where it is used.


Static Nested Classes


As with class methods and variables, a static nested class is associated with its outer class. And like static class methods, a static nested class cannot refer directly to instance variables or methods defined in its enclosing class: it can use them only through an object reference.


Note: A static nested class interacts with the instance members of its outer class (and other classes) just like any other top-level class. In effect, a static nested class is behaviorally a top-level class that has been nested in another top-level class for packaging convenience.

Static nested classes are accessed using the enclosing class name:

OuterClass.StaticNestedClass

For example, to create an object for the static nested class, use this syntax:

OuterClass.StaticNestedClass nestedObject =
     new OuterClass.StaticNestedClass();


Inner Classes


As with instance methods and variables, an inner class is associated with an instance of its enclosing class and has direct access to that object's methods and fields. Also, because an inner class is associated with an instance, it cannot define any static members itself.

Objects that are instances of an inner class exist within an instance of the outer class. Consider the following classes:

class OuterClass {
    ...
    class InnerClass {
        ...
    }
}

An instance of InnerClass can exist only within an instance of OuterClass and has direct access to the methods and fields of its enclosing instance.

To instantiate an inner class, you must first instantiate the outer class. Then, create the inner object within the outer object with this syntax:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

There are two special kinds of inner classes: local classes and anonymous classes.


Shadowing


If a declaration of a type (such as a member variable or a parameter name) in a particular scope (such as an inner class or a method definition) has the same name as another declaration in the enclosing scope, then the declaration shadows the declaration of the enclosing scope. You cannot refer to a shadowed declaration by its name alone. The following example, ShadowTest, demonstrates this:

 
public class ShadowTest {

    public int x = 0;

    class FirstLevel {

        public int x = 1;

        void methodInFirstLevel(int x) {
            System.out.println("x = " + x);
            System.out.println("this.x = " + this.x);
            System.out.println("ShadowTest.this.x = " + ShadowTest.this.x);
        }
    }

    public static void main(String... args) {
        ShadowTest st = new ShadowTest();
        ShadowTest.FirstLevel fl = st.new FirstLevel();
        fl.methodInFirstLevel(23);
    }
}

The following is the output of this example:

x = 23
this.x = 1
ShadowTest.this.x = 0

This example defines three variables named x: the member variable of the class ShadowTest, the member variable of the inner class FirstLevel, and the parameter in the method methodInFirstLevel. The variable x defined as a parameter of the method methodInFirstLevel shadows the variable of the inner class FirstLevel. Consequently, when you use the variable x in the method methodInFirstLevel, it refers to the method parameter. To refer to the member variable of the inner class FirstLevel, use the keyword this to represent the enclosing scope:

System.out.println("this.x = " + this.x);

Refer to member variables that enclose larger scopes by the class name to which they belong. For example, the following statement accesses the member variable of the class ShadowTest from the method methodInFirstLevel:

System.out.println("ShadowTest.this.x = " + ShadowTest.this.x);

Serialization

Serialization of inner classes, including local and anonymous classes, is strongly discouraged. When the Java compiler compiles certain constructs, such as inner classes, it creates synthetic constructs; these are classes, methods, fields, and other constructs that do not have a corresponding construct in the source code. Synthetic constructs enable Java compilers to implement new Java language features without changes to the JVM. However, synthetic constructs can vary among different Java compiler implementations, which means that .class files can vary among different implementations as well. Consequently, you may have compatibility issues if you serialize an inner class and then deserialize it with a different JRE implementation. See the section Implicit and Synthetic Parameters in the section Obtaining Names of Method Parameters for more information about the synthetic constructs generated when an inner class is compiled.



반응형

댓글